The Impact of Quantum Science and Technology on the Cyber Space of the Future

Document Type : Original Article

Author

d

Abstract

Today, arrogant countries have resorted to the use of cyberspace and cyber-attacks to overcome other countries and gain supremacy in various political, military, and economic arenas, and have considered this method as destructive as military offensive methods. In recent years, our country has witnessed several cyber-attacks, such as cyber- attacks on Natanz nuclear facilities using the Stuxnet virus. Surprise, on the other hand, is one of the most dangerous phenomena in international wars and rivalries, and to avoid it in any age, one must intelligently monitor scientific and technological developments in the world and offer prudent strategies to keep up with scientific advances. Cyberspace will evolve in terms of infrastructure and content as well as applications in the age of the advent of quantum technologies. Obtaining a conceptual model of quantum cyberspace will be the background for the design of cyber security and defense systems in the age of the emergence of quantum cyber technologies. The future of cyberspace in an era where quantum technologies are effectively used and exploited creates the future of cyberspace in which all the concepts related to the structure of cyberspace with the consideration of classical hardware and software technologies along with quantum hardware and software and quantum sensing systems are complete and comprehensive structure.
In this study, with the question of what is the conceptual framework of cyberspace in the quantum age, what are its dimensions, components and basic characteristics? By using clustering technique in content analysis and Delphi .

Keywords


  • فهرست منابع ومآخذ

    الف. منابع فارسی

    • دوستی‌مطلق، ن. ا. (۱396)، رایانه‌های کوانتومی؛ مفاهیم، کاربردها و مطالعات بازار، مرکز راهبردی فناوری‌های همگرا، تهران.
    • رضا تقی­پور، ع. ا. (1397 زمستان)، طراحی مدل مفهومی الگوی دفاع سایبری جمهوری اسلامی ایران، فصلنامه امنیت ملی، سال هشتم، شماره سی‌ام.

     

    ب. منابع انگلیسی

    • Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., . . . Buell, D. A. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
    • Bennett, C. H. & Brassard, G. (2020). Quantum cryptography: Public key distribution and coin tossing. arXiv preprint arXiv:2003.06557.
    • Chang, C.-R., Lin, Y.-C., Chiu, K.-L., & Huang, T.-W. (2020). The Second Quantum Revolution with Quantum Computers. AAPPS Bulletin, 30(1).
    • Cross, A. W., Bishop, L. S., Smolin, J. , & Gambetta, J. M. (2017). Open quantum assembly language. arXiv preprint arXiv:1707.03429.
    • Dixon, A., Yuan, Z., Dynes, J., Sharpe, A., & Shields, A. (2008). Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Optics express, 16(23), 18790-18797.
    • A Draft Apocryphal and Anthropocentric Cyberspace. (2010).
    • Green, A. S., Lumsdaine, P. L., Ross, N. J., Selinger, P., & Valiron, B. (2013). An introduction to quantum programming in quipper. Paper presented at the International Conference on Reversible Computation.
    • Hidary, J. D. (2019). Quantum Computing: An Applied Approach: Springer.
    • Hiskett, P. A., Rosenberg, D., Peterson, C. G., Hughes, R. J., Nam, S., Lita, A., . . . Nordholt, J. (2006). Long-distance quantum key distribution in optical fibre. New Journal of Physics, 8(9), 193.
    • Knill, E. (1996). Conventions for quantum pseudocode. Retrieved from
    • Korzh, B., Lim, C. C. W., Houlmann, R., Gisin, N., Li, M. J., Nolan, D., . . . Zbinden, H. (2015). Provably secure and practical quantum key distribution over 307 km of optical fibre. Nature Photonics, 9(3), 163.
    • Liao, S.-K., Cai, W.-Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., . . . Liu, W.-Y. (2018). Satellite-relayed intercontinental quantum network. Physical review letters, 120(3), 030501.
    • Libicki, M. C. (2009). Cyberdeterrence and cyberwar: RAND corporation.
    • Paolini, L., Roversi, L., & Zorzi, M. (2017). Quantum programming made easy. arXiv preprint arXiv:1711.00774.
    • Popkin, G. (2017). China’s quantum satellite achieves ‘spooky action’at record distance. Sci Mag, 15.
    • Resch, S., & Karpuzcu, U. R. (2019). Quantum computing: an overview across the system stack. arXiv preprint arXiv:1905.07240.
    • Schmitt-Manderbach, T., Weier, H., Fürst, M., Ursin, R., Tiefenbacher, F., Scheidl, , . . . Rarity, J. G. (2007). Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Physical review letters, 98(1), 010504.
    • Shaw, D. S. (2010). Cyberspace: What senior military leaders need to know. Retrieved from
    • Strate, L. (1999). The varieties of cyberspace: Problems in definition and delimitation. Western Journal of Communication (includes Communication Reports), 63(3), 382-412.
    • Svore, K., Geller, A., Troyer, M., Azariah, J., Granade, C., Heim, B., . . . Roetteler, M. (2018). Q# Enabling scalable quantum computing and development with a high-level DSL. Paper presented at the Proceedings of the Real World Domain Specific Languages Workshop 2018.
    • Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., . . . Trojek, P. (2006). Free-space distribution of entanglement and single photons over 144 km. arXiv preprint quant-ph/0607182.
    • Yin, J., Cao, Y., Li, Y.-H., Liao, S.-K., Zhang, L., Ren, J.-G., . . . Dai, H. (2017). Satellite-based entanglement distribution over 1200 kilometers. Science, 356(6343), 1140-1144.
    • Zhang, Y., Li, Z., Chen, Z., Weedbrook, C., Zhao, Y., Wang, X., . . . Wang, Z. (2019). Continuous-variable QKD over 50 km commercial fiber. Quantum Science and Technology, 4(3), 035006.
    • Zimet, E., & Skoudis, E. (2009). A graphical introduction to the structural elements of cyberspace. Cyberpower and national security, 91-112.