Ranking of IoT threats in the military environment

Document Type : Original Article

Authors

1 PhD Student in Strategic Cyberspace Management, Faculty of Security, Higher National Defense University, Tehran, Iran

2 Member of the faculty of the University and the Higher Institute of National Defense and Strategic Research

Abstract

IoT technology is one of the emerging technologies that allows data to be sent and received between objects through communication networks and is the source of dramatic changes in various fields, including the military. Utilizing this technology, in addition to the many benefits it will have for military organizations, also have some threats, the most important of which is security. , identifying the threats posed by this emerging technology is a very vital issue. Since determining the use of IoT technology in the military environment depends on determining the importance of threats posed by this technology, the purpose of this study is to rank IoT threats in the military field and the main question of the research is that in Which of the IoT threats is more important in the military field? This research is a descriptive method with a mixed approach (quantitative and qualitative) and using multi-criteria operational research methods. To measure threats, five criteria were used to determine the impact of the threat, the amount of damage in the event of a threat, the impact of the threat on the decision-making area, the impact of the threat as a result of the battle and the reversibility of the threat. The statistical population of this research includes 7 experts and 50 experts in the field of cyber and military. According to the results of this study, among military organizations, among the various threats of IoT technology, threats based on violations of the physical security of systems are more important.

Keywords


  • الف. منابع فارسی

    • پرستش، مریم (۱۳۹۵)، دیوار شیشه‌ای IoT، تهران، ماهنامه خبری، تحلیلی، آموزشی، پژوهشی، اطلاع‌رسانی طیف برق، سال ۱۱، شماره ۵۵، ص ۱۴.
    • تاج، نسرین؛ ترکمن، عاطفه و معدنی، افسانه (1396)، طبقه­بندی موضوعات اینترنت اشیاء و درجه­بندی حساسیت آن­ها، تهران، پژوهشگاه ارتباطات و فناوری اطلاعات وزارت ارتباطات و فناوری اطلاعات.
    • عطاریان، آیه (۱۳۹۵)، پارادایم امنیت در پلتفرم اینترنت اشیاء، تهران، ششمین همایش پژوهش‌های نوین در علوم و فناوری، صص 11-7.
    • فضل‌علی، پویا (۱۳۹۵)، نُه تهدید امنیتی رایج رایانش ابری، روزنامه همشهری، ویژه‌نامه هفته پدافند غیرعامل، صص ۵3- ۵0.
    • کاشیپور، میثم (۱۳۹۴)، دیده‌بانی و رصد تهدیدها و فرصت‌های موجود در شکا‌ف‌های عملکردی ریزتراشه‌ها و بهره‌برداری از آن در جنگ‌های اطلاعاتی آینده، تهران، مرکز آینده‌پژوهی علوم و فناوری دفاعی مؤسسه آموزشی و تحقیقاتی صنایع دفاعی، چاپ دوم.
    • معاونت علمی و فناوری ریاست جمهوری، بدون نویسنده (۱۳۹۵)، گزارش شماره 1: از سلسله مطالعات برنامه ملی آینده‌نگاری در حوزه فناوری اطلاعات و ارتباطات اینترنت اشیاء و چگونگی ارزش‌آفرینی آن از نگاه مؤسسه جهانی مکنزی، دبیرخانه برنامه ملی آینده‌نگاری علم و فناوری در حوزه فناوری اطلاعات و ارتباطات، صص 4-3.
    • معاونت علمی و فناوری ریاست جمهوری، بدون نویسنده (۱۳۹۵)، گزارش شماره 3: اینترنت اشیاء و چگونگی ارزش‌آفرینی آن از نگاه مؤسسه جهانی مکنزی، دبیرخانه برنامه ملی آینده‌نگاری علم و فناوری.
    • یزدان‎پناه، حمیدرضا و حسنی آهنگر، محمدرضا (۱۳۹۵)، اینترنت اشیاء: کاربردها، فناوری‌ها و چالش‌های مورد بحث، تهران، هشتمین کنفرانس بین‌المللی فناوری اطلاعات و دانش، صص 7-6.

     

    ب. منابع لاتین

    • AbdulGhani, H.; Konstantas D. & Mahyoub M. (2018). “A comprehensive iot attacks survey based on a building-blocked reference model,” International Journal of Advanced Computer Science and Applications (IJACSA), vol. 9, no. 3, 2018
    • Applegate, S. (2016). The principle of maneuver in cyber operations. 4th International Conference on Cyber Conflict (CYCON), pp. 1–13.
    • APWG, (2017). Phishing Activity Trends Report. Retrieved From https://docs.apwg.org/reports/apwg_trends_report_q4_2017.pdf//, online; accessed 12 Feburary 2019.
    • Arashi, R.; Pedersen, L.& Hillock, A. (2017). Defense Policy and the Internet of Things. Disrupting Global Cyber Defenses, Deloitte Group.
    • Basak, A. (2017). Security Assurance for System-on-Chip Designs With Untrusted IPs, IEEE Trans. Information Forensics and Security, 1515-1528, June-2017.
    • Butun, I.; Österberg, P. & Song. H. (2020). Security of the Internet of Things: Vulnerabilities, Attacks, and Countermeasures. IEEE Communications Surveys Tutorials 22, 1 (2020), 616–644.
    • Chu, T. & Lin Y., (2013). A Fuzzy TOPSIS Method for Robot Selection. Int J Adv Manuf Technol 21:284–290.
    • Hassan Q.F.; Rehman Khan, A. & Madani, S. (2018). Internet of Things  Challenges, Advances, and Applications. CRC Press, Taylor & Francis Group, p. 4.
    • Husamuddin, M. & Qayyu, M. (2018). Internet of Things: A study on Security and Privacy Threats. In Second International Conference on Anti-Cyber Crimes (ICACC), 2017. [Online]. Available: https://ieeexplore.ieee.org/document/7905270 [March 26, 2018].
    • Hwang, C. & Yoon, K. (2015), multiple attribute decision making: methods and applications. Springer, Berlin Heidelberg New York.
    • Word Forum On Internet Of Things, (2018). “MILITARY APPLICATIONS OF IOT”.  RETRIEVED FROM http://wfiot2018.iot.ieee.org/sps2-military-applications-iot/
    • Kumar, S.; Sahoo, S.; Mahapatra, A. & Swain, A.K (2017). Security enhancements to system on chip devices for iot perception layer. in 2017 IEEE International Symposium on Nanoelectronic and Information Systems (iNIS). IEEE, 2017, pp. 151–156.
    • Liao, C.; Shuai, H. & Wang, L. (2018). Eavesdropping prevention for heterogeneous internet of things systems. in 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC). IEEE, 2018, pp. 1–2.
    • Masoodi, F.; Alam, S. & Siddiqui S.T. (2019). SECURITY& PRIVACY THREATS, ATTACKS AND COUNTERMEASURES IN INTERNET OF THINGS. International Journal of Network Security & Its Applications (IJNSA) Vol. 11, No.2, March 2019, P. 67-77.
    • Misra, S.; Maheswaran, M. & Hashmi, S. (2017). “Security Challenges and Approaches in Internet of Things”. Springer International Publishing AG Switzerland. (pp. 25-38)
    • Raju, K. & Bapauji, V. (2016). Internet of Things (IoT): Security and privacy threats. In IEEE International Conference Robot Autom, 2016. [Online]. Available: https://www.researchgate.net/publication/305302451 [March 26, 2018] P. 1-13.
    • RTO Task Group, (2015). “Military Applications Of Internet Of Things (IST-147)”. Contact STO/CSO Panel Office, P 2, Retrieved From https://www.cso.nato.int/activity_meta.asp.
    • Staalduinen, M. & van, J. (2019). THE IoT SECURITY LANDSCAPE. Cyber Security Agency of Singapore, Ministry of Economic Affairs and Climate Policy of the Netherlands.
    • Tasneem, Y.; Rwan, M.; Fadi, A. & Imran (2015). Internet of Things (IoT) Security: Current Status, Challenges and Countermeasures. International Journal for Information Security Research (IJISR), Volume 5, Issue 4, P. 47-55.
    • Tripathy B.K. & Anuradha J. (2018) INTERNET OF THINGS (IoT) Technologies, Applications, Challenges, and Solutions. CRC Press, Taylor & Francis Group. P. 78
    • Tweneboah, K.S.; Skouby, K.E. & Tadayoni R. (2017). Cyber Security Threats to IoT Applications and Service Domains. Wireless Personal Communications Journal, Volume 94, Number 4, June 2017, ISSN 0929-6212, DOI 10.1007/s11277-017-4434-6.
    • U.S. Department of Defense, (2016). Policy Recommendations for The Internet of Things (IoT). Chief Information Officer. 
    • Venkata R. (2017). Decision making in the manufacturing environment: using graph theory and fuzzy multiple attribute decision making methods. (Springer series in advanced manufacturing), Springer.
    • Waheed, N.; He, X.; Ikram, M.; Hashmi, S. & Usman, M. (2020). Security and Privacy in IoT Using Machine Learning and Blockchain: Threats and Countermeasures. ACM Comput. Surv., Vol. 53, No. 3, Article 1 (April 2020), P. 35-51.
    • Yang, T. & Chou, P. (2015). solving a multiresponse simulation–optimization problem with discrete variables using a multi-attribute decision-making method, Mathematics and Computers in Simulation.